An Inductance-Based Sensing System for Bellows-Driven Continuum Joints in Soft Robots
نویسندگان
چکیده
In this work we present a novel, inductance-based system to measure and control the motion of bellows-driven continuum joints in soft robots. The sensing system relies on coils of wire wrapped around the minor diameters of each bellows on the joint. As the bellows extend, these coils of wire become more distant, decreasing their mutual inductance. Measuring this change in mutual inductance allows us to measure the motion of the joint. By dividing the sensing of the joint into two sections and measuring the motion of each section independently, we are able to measure the overall deformation of the joint with a piecewise constant-curvature approximation. This technique allows us to measure lateral displacements that would be otherwise unobservable. When measuring bending, the inductance sensors measured the joint orientation with an RMS error of 1.1 ◦. The inductance sensors were also successfully used as feedback to control the orientation of the joint. The sensors proposed and tested in this work provided accurate motion feedback that would be difficult to achieve robustly with other sensors. This sensing system enables the creation of robust, self-sensing, and soft robots based on bellows-driven continuum joints.
منابع مشابه
Integer-order Versus Fractional-order Adaptive Fuzzy Control of Electrically Driven Robots with Elastic Joints
Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots has been addressed in this paper. Two important practical situations have been considered: the fact that robot actuators have limited voltage, and the fact that current signals are contaminated with noise. Through of a novel voltage-based fractional order control for an integer-order dynamical ...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملAn Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators
This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...
متن کاملDesign and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
This paper presents a bio‐inspired wire‐driven multi‐section flexible robot. It is inspired by the snake skeleton and octopus arm muscle arrangements. The robot consists of three sections and each section is made up of several identical vertebras, which are articulated by both spherical joints and a flexible backbone. Each section is driven by two groups of wires, controlling t...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کامل